REQUIREMENTS FOR BIOLOGY MAJORS

There are five ways to complete a major in Biology. A student can obtain a General Biology Major or may complete one of the three major tracks that concentrate on a specific level of biological organization: Cellular and Molecular; Physiological and Organismal; or Ecological and Evolutionary. As of spring 2021, we are introducing a fifth track in Computational Biology that involves a distinctive mix of biology lecture and lab courses in addition to courses in computation. All tracks within the major must fulfill common foundational and senior capstone requirements outlined in this packet.

Introductory Biology and Genetics

Students without a high-school biology background may begin the introductory sequence with BIOL BC1002 Global Health and Ecology and the co-requisite lab BIOL BC1012 in the fall of their freshman year followed by BIOL BC1502 in the spring and BIOL BC1500 in the fall of their sophomore year. All Biology majors must complete the 1500-level introductory sequence followed by a course in Genetics:

- BIOL BC1500 Introduction to Organismal and Evolutionary Biology*
- BIOL BC1501 Introductory Lab in Organismal and Evolutionary Biology**
- BIOL BC1502 Introduction to Cell and Molecular Biology*
- BIOL BC1503 Introductory Lab in Cell and Molecular Biology**
- BIOL BC 2100 Molecular and Mendelian Genetics (or BIOL UN3031 Genetics)

*Beginning in fall 2020, all students enrolled in the 3-point BIOL BC1500 (fall) & BIOL BC1502 (spring) lectures will be required to enroll in a 0-point 50-minute discussion section (BIOL BC1510 for fall & BIOL BC1512 for spring). These weekly sessions will cover topics ranging from how to read a scientific journal article to how science impacts society. **Enrollment in the asynchronous BIOL BC1511/1513 Recitation is mandatory to enroll in lab.

Students pursuing a Computational Biology track have the additional pre-requisite requirements of one introductory course to learn a coding language and one introductory course in statistics, balanced by an exemption from the chemistry requirements detailed below. The courses that can fulfill these requirements include:

Introductory Computing Courses:

- COMS W1004 Introduction to Computer Science and Programming in Java
- COMS BC1016 Introduction to Computational Thinking and Data Science
- ENGI E1006 Introduction to Computing for Engineers and Applied Scientists (taught in Python)

Introductory Statistics Courses:

- STAT UN1010 Statistical Thinking for Data Science with Python Labs
- STAT UN1101 Introduction to Statistics
- STAT UN2102 Applied Statistical Computing
- NSBV BC2002 Statistics and Experimental Design
- EEEB UN3005 Introduction to Statistics for Ecology and Evolutionary Biology
It is **recommended**, but not required, that Genetics be taken immediately after completing the 1500-level introductory sequence, as it is a pre-requisite for many upper-level lectures & laboratories, particularly those in the Cellular & Molecular track. However, there are many courses, such as BIOL BC2280 Animal Behavior, BIOL BC2272 Ecology, or BIOL BC3360 Physiology, that **do not** require Genetics, which a student may take as early as their sophomore year.

Five Upper-Level Elective Courses

All Biology majors must complete five upper-level courses, with category distribution requirements listed in the table below, followed by courses that fulfill each category.

- To complete the General Biology Major, the five courses must include at least one course from each of the three categories (C&M, P&O, and E&E); including a course in computation is recommended, but not required.

- To complete one of the four tracks, at least four courses must be from the appropriate category and, as a breadth requirement, at least one must be from another category.

Although some courses are listed in multiple categories, a student can only use a course toward one of the categories. Additional Columbia Biological Sciences and Ecology, Evolution, and Environmental Biology (E3B) courses that can be used to fulfill the major requirements are provided on the Course Listings page. If a student completes courses that make them eligible for more than one of the five major tracks, then they may select which one is reflected on their transcript.

<table>
<thead>
<tr>
<th>Major</th>
<th>Course Selections</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Biology (GB)</td>
<td>Five courses with at least one course from each of the three categories (C&M, P&O, and E&E) + any three upper-level biology labs (two of which can be fulfilled with a yearlong Research & Seminar course)</td>
</tr>
<tr>
<td>Cell & Molecular Biology (C&M)</td>
<td>Four courses from the C&M category + one from another category (P&O or E&E) + any three upper-level biology labs (two of which can be fulfilled with a yearlong Research & Seminar course)</td>
</tr>
<tr>
<td>Physiology & Organismal Biology (P&O)</td>
<td>Four courses from the P&O category + one from another category (C&M or E&E) + any three upper-level biology labs (two of which can be fulfilled with a yearlong Research & Seminar course)</td>
</tr>
<tr>
<td>Ecology & Evolutionary Biology (E&E)</td>
<td>Four courses from the E&E category + one from another category (C&M or P&O) + any three upper-level biology labs (two of which can be fulfilled with a yearlong Research & Seminar course)</td>
</tr>
<tr>
<td>Computational Biology (CB)</td>
<td>Four computing courses from the CB-COMP category + one course from the CB-BIOL category + one upper-level biology lab listed in the following section</td>
</tr>
</tbody>
</table>
Students should note that some courses, such as BIOL BC2500 MATLAB for Scientists or BIOL BC2490 Coding in Biology may count as an upper-level elective or as an upper-level lab for those pursuing the GB, C&M, P&O, and E&E tracks. BIOL BC2500 MATLAB for Scientists may count as an upper-level elective for any of the three track categories, but cannot be used to fulfill the breadth requirement in any track.

Categories of Upper-level Elective Courses in the Biology Major
(See pages 8–12 of this packet for Biology courses offered in Summer ’21 & AY21–22)
Visit our [Columbia & E3B Course Listings](#) for a comprehensive list of Columbia Courses that count toward the major.

Cellular & Molecular Biology (C&M):
- BIOL BC2278 Evolution
- BIOL BC2490 Coding in Biology
- BIOL BC3308 Microbial Genomics (formerly called Genomics and Bioinformatics)
- BIOL BC3304 Topics in Molecular Genetics
- BIOL BC3310 Cell Biology (or BIOL UN3041 Cell Biology)
- BIOL BC3320 Microbiology
- BIOL BC3352 Development (or BIOL UN3022 Developmental Biology)
- BIOL BC3362 Molecular and Cellular Neuroscience
- CHEM BC3282 Biological Chemistry (or BIOL UN3300 Biochemistry or BIOC UN3511 Biochemistry I: Structure & Metabolism)
- BIOL UN3004 Neurobiology I: Cellular & Molecular Neurobiology
- BIOL UN3034 Biotechnology
- BIOL UN3073 Cellular and Molecular Immunology
- BIOL UN3310 Virology
- BIOL UN3512 Molecular Biology

Physiological & Organismal Biology (P&O):
- BIOL BC2262 Vertebrate Biology
- BIOL BC2280 Animal Behavior
- BIOL BC3320 Microbiology
- BIOL BC3352 Development (or BIOL UN3022 Developmental Biology)
- BIOL BC3360 Physiology (or BIOL UN3006 General Physiology)
- BIOL W3005 Neurobiology II: Development & Systems
- EEEB UN3011 Behavioral Biology of Living Primates (EEEB UN1011 is NOT equivalent)
- EEEB UN3208 Explorations in Primate Anatomy
- EEEB W4112 Ichthyology

Ecological & Evolutionary Biology (E&E):
- BIOL BC2240 Plant Evolution and Diversity
- BIOL BC2262 Vertebrate Biology
- BIOL BC2272 Ecology
- BIOL BC2278 Evolution
- BIOL BC2280 Animal Behavior
- BIOL BC2851 Plants and Profits: The Global Power of Botany
- BIOL BC3380 Applied Ecology and Evolution
- BIOL BC3320 Microbiology
- EEEB UN3005 Introduction to Statistics for Ecology & Evolutionary Biology
- EEEB UN3087 Conservation Biology
- EEEB UN3220 The Evolution of Human Growth & Development
- EEEB UN3970 Biological Basis of Human Variation
- EEEB W4110 Coastal Estuarine Ecology
- EEEB W4111 Ecosystem Ecology and Global Change
Computational Biology—Computing (CB-COMP):

- EESC BC3050 Big Data with Python: Python for Environmental Analysis & Visualisation
- EESC GU4050 Remote Sensing
- COMS W4761 Computational Genomics
- BIOL BC2490 Coding in Biology
- BIOL BC2500 MATLAB for Scientists
- BIOL BC2841 Laboratory in Plant Evolution and Diversity
- BIOL BC2851 Plants and Profits: The Global Power of Botany
- BIOL BC3308 Microbial Genomics (formerly called Genomics and Bioinformatics)
- BIOL BC3590 Senior Seminar: Bacteria by Design*

*Different topics for this course are taught each semester. Only Bacteria by Design will fulfill this requirement. This class may count as either an upper-level elective course OR the senior capstone experience.

Computational Biology—Biology (CB-BIOL)*:

- BIOL BC3304 Topics in Molecular Genetics
- BIOL BC3310 Cell Biology (or BIOL UN3041 Cell Biology)
- BIOL BC3320 Microbiology
- BIOL BC3352 Development (or BIOL UN3022 Developmental Biology)
- BIOL BC3600 Physiology (or BIOL UN3006 General Physiology)
- BIOL BC3362 Molecular and Cellular Neuroscience
- BIOL BC3380 Applied Ecology & Evolution

*Ask an adviser about new or less frequently taught 3000-level courses at Barnard or Columbia, or about transfer or study-abroad credit.

Upper-Level Laboratory Courses

While students pursuing the Computational Biology track are required to take only one upper-level lab from the list on the following page, students pursuing any of the other four tracks are required to take three upper-level lab courses. Students in the General Biology, C&M, P&O, and E&E tracks may take any upper-level Barnard Biology lab courses for which they meet the pre- or co-requisites. Often, a lab course requires that a student have taken a pre-requisite lecture offered in the opposite semester (though sometimes, the lecture may be offered as a co-requisite in the same semester). Many of the upper-level labs frequently offered in the Barnard Biology Department are provided in the list below. A yearlong research & seminar course may substitute up to two lab courses, as described below. As is true for lectures, students may also take laboratory courses at Columbia (or other institutions) to satisfy the lab requirement, with permission from the Chair.

- Guided Research and Seminar (BIOL BC3591 & BIOL BC3592)

 Enrollment in the yearlong Guided Research and Seminar course can be used to fulfill up to two upper-level labs in all tracks except for Computational Biology. This course is only available as a fall to spring sequence. Seniors may not enroll in Guided Research and Seminar if they are enrolled in Senior Thesis Research and Seminar (see below). In Guided Research and Seminar, students complete an original research project in a lab, and both write a scientific paper and give a poster presentation of their work at the Annual Barnard Biology Research Symposium.

 For more information, visit our Undergraduate Research page.
Upper-level Lab Courses for Computational Biology Track:

- BIOL BC3303 Laboratory in Molecular Biology
- BIOL BC3305-BC3306 Project Laboratory in Molecular Genetics (yearlong course)
- BIOL BC3311 Laboratory in Cell Biology
- BIOL BC3321 Laboratory in Microbiology
- BIOL BC3361 Laboratory in Physiology
- BIOL BC3363 Laboratory in Molecular and Cellular Neuroscience

Commonly Offered Upper-level Lab Courses for GB, C&M, P&O, and E&E Tracks:

- BIOL BC2281 Laboratory in Animal Behavior
- BIOL BC2490 Coding in Biology*
- BIOL BC2500 MATLAB for Scientists**
- BIOL BC2801 Laboratory in Genetics
- BIOL BC2841 Laboratory in Plant Evolution and Diversity
- BIOL BC2873 Laboratory in Ecology
- BIOL BC3303 Laboratory in Molecular Biology
- BIOL BC3305-BC3306 Project Laboratory in Molecular Genetics (yearlong course)
- BIOL BC3311 Laboratory in Cell Biology
- BIOL BC3321 Laboratory in Microbiology
- BIOL BC3354 Laboratory in Embryology
- BIOL BC3361 Laboratory in Physiology
- BIOL BC3363 Laboratory in Molecular and Cellular Neuroscience
- BIOL BC3591-BC3592 Guided Research & Seminar

* Coding in Biology can count either as an upper-level lab for the GB, C&M, P&O, and E&E tracks, or as an upper-level elective in the C&M or CB-COMP categories.

** MATLAB for Scientists can count either as an upper-level lab for the GB, C&M, P&O, and E&E tracks, or as an upper-level elective in the C&M, P&O, E&E, and CB-COMP categories, but cannot fulfill a breadth requirement.

Senior Capstone Experience

All Biology majors must complete the Senior Capstone Experience with either of the following two options:

1. One semester of Senior Seminar (BIOL BC3590)

 In Senior Seminar, students participate in a seminar focusing on primary literature, and both compose and give a presentation on a senior thesis in the format of a literature review. Topics vary from semester to semester. To fulfill the Computational Biology track senior capstone requirement, you must enroll in Professor Lopatkin’s Bacteria by Design topic.

 Fall 2021 Topic: Bacteria by Design

 In this course, students will explore in-depth the field of synthetic biology with a focus on engineered bacteria. Topics include fundamental design principles, environmental and clinical applications, as well as ethical implications.

 Spring 2022 Topic: Regenerative Biology

 This seminar will explore the cellular behavior that underlies complex tissue maintenance and repair. Student discussion and presentations will center on primary literature examining different regenerative model systems, such as zebrafish, salamander, and mouse. This course will explore topics in tissue homeostasis, injury repair, and organ regeneration. In addition, we will discuss new concepts in regenerative medicine including in vitro systems and stem cell applications for human disease therapies.
2. The year-long Senior Thesis Research and Seminar (BIOL BC3593 & BIOL BC3594)

In Senior Thesis Research and Seminar, students complete an original research project in a lab, and both write a scientific paper and orally present their work at the Barnard Biology Research Symposium. This course is only available as a fall to spring sequence. For more information, visit our Undergraduate Research page.

Note: Seniors enrolled in Guided Research and Seminar to fulfill two upper-level labs for their major cannot take Senior Thesis Research and Seminar at the same time. Instead, they must complete their senior capstone experience with BIOL BC3590 Senior Seminar.

Chemistry Requirement

Majors in all tracks must complete at least one semester of General Chemistry (with laboratory) and at least one semester of Organic Chemistry (with laboratory). Students pursuing a major in the Computational Biology track are exempt from these requirements to balance their required introductory courses in computing and statistics. To see which courses will be offered in fall 2021, we encourage students to visit the CU Directory of Classes pages for Chemistry at Barnard and at Columbia. Equivalent courses at Columbia may be taken in lieu of the Barnard Chemistry CHEM BC2001 + CHEM BC2012 General Chemistry lecture + lab (offered in the fall only) and CHEM BC3230 + CHEM BC3328 Organic Chemistry lecture + lab (offered in the spring only) courses.

This is an important topic to discuss early with your adviser.

REQUIREMENTS FOR BIOLOGY MINORS

A minor in biology includes:

- One year of introductory biology (BIOL BC1500, BC1501, BC1502, BC1503).
- Three biology lecture courses at the BIOL BC2100 level or higher.
- Two biology laboratory courses. The lab courses may be replaced by two semesters of Guided Research and Seminar (BIOL BC3591 & BIOL BC3592).

Note: Chemistry, environmental science, physics, and psychology majors need to take only one advanced laboratory instead of two. Check with your major adviser in order to determine whether a guided research course is a suitable selection for your major’s requirements.

To declare a minor in biology, a student must submit their Minor Declaration form to be signed by the Chair using Slate.
MAJOR ADVISING POLICY

In the Barnard Department of Biological Sciences, students select their advisers rather than having them assigned. Students should contact prospective advisers directly. After a faculty member has agreed to be your adviser, a student’s choice must be approved and their Major Declaration form signed by the Chair using Slate. Any biology faculty member can serve as an adviser in the GB, C&M, P&O, and E&E tracks. In computational biology, Professors Brian Morton, JJ Miranda, and Allison Lopatkin can serve as advisers. Switching advisers as a student develops new relationships with faculty in the department can easily be done by submitting a Change in Major Adviser form in Slate.

To learn more about our faculty and to find contact information, visit our Faculty & Staff and Major Advising pages to view adviser profiles.

ENVIRONMENTAL BIOLOGY

(Potential adviser in the Biology Department is Professor Callahan)

This major is run jointly by faculty in the Departments of Biological Sciences and Environmental Science. It examines the interactions between living and non-living components of the environment, and how human activities alter these interactions. For more information, visit: envsci.barnard.edu/environmental-biology-major

RESEARCH OPPORTUNITIES

We strongly encourage students to get involved in research during the summer, academic year, or both. For many students, research is one of the most intellectually rewarding experiences at Barnard. When unpaid research is conducted during the academic year, students can receive academic credit for working in a laboratory at Barnard or anywhere else in New York City. Research can be conducted during any (or all) semesters of the major, and during the summer. You may not receive credit for research that is paid.

Three courses provide credit for research during the academic year. Before signing up for any of these courses, you should examine the Checklist for Enrollment located on the Biology website:

1. **Guided Research (BIOL BC3597):** This is a variable-credit (1-4 credits) one-semester course, which can be taken during any fall or spring semester as early as your freshman year. This course counts toward degree credit but does not fulfill major requirements, and may be taken in multiple semesters.

2. **Guided Research & Seminar (BIOL BC3591-2):** This is a yearlong 8-point (4 pts/semester) course that begins in the fall and can be taken starting in your sophomore year. This series fulfills two upper-level lab courses toward the major.

3. **Senior Thesis Research (BIOL BC3593-4):** This is a yearlong 8-point (4 pts/semester) course, beginning in the fall of your senior year. This series fulfills the senior capstone requirement.

To be fully enrolled in any of these courses, a student must submit a Project Approval Form to the department administrator. Students enrolled in yearlong courses need only submit one form in the fall; those taking BIOL BC3597 Guided Research should resubmit this form each semester. For AY20–21, this form will be due May 17th for summer A & July 12th for summer B. For AY21–22, this form is due Sept. 20th for the fall semester and Jan. 31st for the spring semester.
BIOLOGY MAJORS-LEVEL COURSES OFFERED SUMMER 2021

Visit the [CU Directory of Classes](https://directory.columbia.edu) for course descriptions, caps, and pre-requisite information

<table>
<thead>
<tr>
<th>TERM</th>
<th>COURSE NO.</th>
<th>COURSE TITLE</th>
<th>PROFESSOR</th>
<th>TIME(S) OFFERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer A</td>
<td>BIOL BC2100</td>
<td>Molecular & Mendelian Genetics</td>
<td>Jennifer Mansfield</td>
<td>MTWTH 9:00 - 10:35 am</td>
</tr>
<tr>
<td>Summer A</td>
<td>BIOL BC2490</td>
<td>Coding in Biology*</td>
<td>Brian Morton</td>
<td>MTWTH 9:00 - 10:35 am</td>
</tr>
</tbody>
</table>

Upper-Level Electives

<table>
<thead>
<tr>
<th>TERM</th>
<th>COURSE NO.</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer A</td>
<td>BIOL BC3311</td>
<td>Lab in Cell Biology</td>
</tr>
</tbody>
</table>

*Biol BC2490 may be used to fulfill either an upper-level C&M elective or an upper-level laboratory course.

BIOLOGY NON-MAJORS-LEVEL COURSES OFFERED SUMMER 2021

<table>
<thead>
<tr>
<th>TERM</th>
<th>COURSE NO.</th>
<th>COURSE TITLE</th>
<th>PROFESSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer A & B</td>
<td>BIOL BC3597</td>
<td>Guided Research*</td>
<td>Sign up for your internal advisor’s section</td>
</tr>
</tbody>
</table>

In order to sign up for a section of Guided Research, you must submit a [Project Approval Form](https://example.com) by May 17th for the summer semester A and Jul. 12th for the summer semester B. For these immersive semesters, the expectation is that you will work 6 hours/week for every point of credit that you sign up for (between 1–4 points). For students who want to work 3 hours/week for the entirety of Summers A-B, they should enroll in only 1 point of credit in Summer B.
BIOLOGY MAJORS-LEVEL COURSES OFFERED FALL 2021

Visit the [CU Directory of Classes](https://directory.columbia.edu/) on March 15th for course descriptions, caps, and pre-requisite information.

<table>
<thead>
<tr>
<th>COURSE NO.</th>
<th>COURSE TITLE</th>
<th>PROFESSOR</th>
<th>TIME(S) OFFERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTORY BIOLOGY & GENETICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL BC1500</td>
<td>Introduction to Organismal & Evolutionary Biology</td>
<td>John Glendinning</td>
<td>M W F 9:00 – 9:50 am</td>
</tr>
<tr>
<td>BIOL BC1501</td>
<td>Introductory Lab in Organismal & Evolutionary Biology (various sections)</td>
<td>Jessica Goldstein</td>
<td>Times TBD</td>
</tr>
<tr>
<td>BIOL BC1510</td>
<td>BIOL BC1500 Discussion Section (various sections)</td>
<td>John Glendinning</td>
<td>Times TBD</td>
</tr>
<tr>
<td>BIOL BC1511</td>
<td>BIOL BC1501 Recitation</td>
<td>Jessica Goldstein</td>
<td>Will meet asynchronously</td>
</tr>
<tr>
<td>BIOL BC2100</td>
<td>Molecular & Mendelian Genetics</td>
<td>Jennifer Mansfield</td>
<td>T TH 10:10 – 11:25 am</td>
</tr>
<tr>
<td>UPPER-LEVEL ELECTIVES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL BC2500</td>
<td>MATLAB for Scientists*</td>
<td>Allison Lopatkin</td>
<td>T 1:00 – 4:00 pm</td>
</tr>
<tr>
<td>BIOL BC3310</td>
<td>Cell Biology</td>
<td>Jon Snow</td>
<td>TTH 8:40 – 9:55 am</td>
</tr>
<tr>
<td>BIOL BC3320</td>
<td>Microbiology</td>
<td>JJ Miranda</td>
<td>TTH 10:10 – 11:25 am</td>
</tr>
<tr>
<td>BIOL BC3360</td>
<td>Physiology</td>
<td>Jordan Balaban</td>
<td>MW 10:10 – 11:25 am</td>
</tr>
<tr>
<td>BIOL BC3362</td>
<td>Molecular & Cellular Neuroscience</td>
<td>Elizabeth Bauer</td>
<td>MW 11:40 am – 12:55 pm</td>
</tr>
<tr>
<td>TBD</td>
<td>E&E/O&P Lecture</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>UPPER-LEVEL LABS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL BC2841</td>
<td>Lab in Plant Evolution and Diversity</td>
<td>Hilary Callahan</td>
<td>F 12:10 – 5:00 pm</td>
</tr>
<tr>
<td>BIOL BC3305</td>
<td>Project Lab in Molecular Genetics**</td>
<td>Jennifer Mansfield & Brian Morton</td>
<td>W 1:10 – 6:00 pm</td>
</tr>
<tr>
<td>BIOL BC3311</td>
<td>Lab in Cell Biology</td>
<td>Jon Snow</td>
<td>TH 1:10 – 6:00 pm</td>
</tr>
<tr>
<td>BIOL BC3591</td>
<td>Guided Research & Seminar***</td>
<td>Jessica Goldstein & JJ Miranda</td>
<td>M 1:10 – 3:00 pm</td>
</tr>
<tr>
<td>SENIOR CAPSTONE REQUIREMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL BC3590</td>
<td>Senior Seminar: Bacteria by Design</td>
<td>Allison Lopatkin</td>
<td>M 4:10 – 6:00 pm</td>
</tr>
<tr>
<td>BIOL BC3593</td>
<td>Senior Thesis Research & Seminar***</td>
<td>JJ Miranda & Jessica Goldstein</td>
<td>M 1:10 – 3:00 pm</td>
</tr>
</tbody>
</table>

*BIOl BC2500 Matlab for Scientists may be used to fulfill either an upper-level elective or an upper-level laboratory course for the major.

**BIOl BC3305-BC3306 is a full-year course and counts as two upper-level labs for the major; must be taken in fall to spring sequence. Enrollment in BC3306 is required in spring 2022.

***Full-year courses; BIOL BC3591-BC3592 & BC3593-BC3594 can only be taken in a fall to spring sequence. Enrollment in BIOL BC3592 or BC3594 is required in spring 2022.
BIOLOGY NON-MAJORS-LEVEL COURSES OFFERED FALL 2021

Visit the [CU Directory of Classes](#) on March 15th for course descriptions, caps, and pre-requisite information

<table>
<thead>
<tr>
<th>COURSE NO.</th>
<th>COURSE TITLE</th>
<th>PROFESSOR</th>
<th>TIME(S) OFFERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>R E S E A R C H F O R D E G R E E C R E D I T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL BC1001</td>
<td>Revolutionary Concepts in Biology</td>
<td>TBA</td>
<td>T TH 10:10 - 11:25 am</td>
</tr>
<tr>
<td>BIOL BC3597</td>
<td>Guided Research*</td>
<td>Sign up for your internal advisor’s section</td>
<td>N/A</td>
</tr>
</tbody>
</table>

In order to sign up for a section of Guided Research, you must submit a [Project Approval Form](#) by Sept. 20th for the fall semester.
BIOLOGY MAJORS-LEVEL COURSES OFFERED SPRING 2022

Visit the [CU Directory of Classes](https://www.columbia.edu/cu/curriculum/coursedescriptions) in November for course descriptions, caps, and pre-requisite information

<table>
<thead>
<tr>
<th>COURSE NO.</th>
<th>COURSE TITLE</th>
<th>PROFESSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION TO BIOLOGY & GENETICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL BC1502</td>
<td>Introduction to Cellular & Molecular Biology</td>
<td>Jon Snow</td>
</tr>
<tr>
<td>BIOL BC1503</td>
<td>Introductory Lab in Cellular & Molecular Biology</td>
<td>Jessica Goldstein</td>
</tr>
<tr>
<td></td>
<td>(various sections)</td>
<td>Multiple instructors</td>
</tr>
<tr>
<td>BIOL BC1512</td>
<td>BIOL BC1502 Discussion Section</td>
<td>Jon Snow</td>
</tr>
<tr>
<td></td>
<td>(various sections)</td>
<td>Multiple instructors</td>
</tr>
<tr>
<td>BIOL BC1513</td>
<td>BIOL BC1503 Recitation</td>
<td>Jessica Goldstein</td>
</tr>
<tr>
<td>BIOL BC2100</td>
<td>Molecular & Mendelian Genetics</td>
<td>Brian Morton</td>
</tr>
<tr>
<td>UPPER-LEVEL ELECTIVES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL BC2272</td>
<td>Ecology</td>
<td>Hilary Callahan</td>
</tr>
<tr>
<td>BIOL BC3352</td>
<td>Development</td>
<td>Rishita Shah</td>
</tr>
<tr>
<td>TBD</td>
<td>E&E/O&P Lecture</td>
<td>TBD</td>
</tr>
<tr>
<td>UPPER-LEVEL LABS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL BC3306</td>
<td>Project Lab in Molecular Genetics*</td>
<td>Jennifer Mansfield & Brian Morton</td>
</tr>
<tr>
<td>BIOL BC3308</td>
<td>Genomics and Bioinformatics</td>
<td>Allison Lopatkin</td>
</tr>
<tr>
<td>BIOL BC3320</td>
<td>Lab in Microbiology</td>
<td>JJ Miranda</td>
</tr>
<tr>
<td>BIOL BC3361</td>
<td>Lab in Physiology</td>
<td>Jordan Balaban</td>
</tr>
<tr>
<td>BIOL BC3363</td>
<td>Lab in Molecular & Cellular Neuroscience</td>
<td>Elizabeth Bauer</td>
</tr>
<tr>
<td>BIOL BC3592</td>
<td>Guided Research & Seminar**</td>
<td>Jessica Goldstein & JJ Miranda</td>
</tr>
<tr>
<td>SENIOR CAPSTONE REQUIREMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL BC3590</td>
<td>Senior Seminar: Regenerative Biology</td>
<td>Rishita Shah</td>
</tr>
<tr>
<td>BIOL BC3594</td>
<td>Senior Thesis Research & Seminar**</td>
<td>JJ Miranda & Jessica Goldstein</td>
</tr>
</tbody>
</table>

*BIOl BC3305-BC3306 is a full-year course and counts as two upper-level labs for the major; must be taken in fall to spring sequence. Enrollment in BC3305 is required in fall 2021.**

Full-year courses; BIOL BC3591-BC3592 & BC3593-BC3594 can only be taken in a fall to spring sequence. Enrollment in BIOL BC3591 or BC3593 is required in fall 2021.
BIOLOGY NON-MAJORS-LEVEL COURSES OFFERED SPRING 2022

Visit the CU Directory of Classes in November for course descriptions, caps, and pre-requisite information

<table>
<thead>
<tr>
<th>COURSE NO.</th>
<th>COURSE TITLE</th>
<th>PROFESSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LECTURES</td>
<td></td>
</tr>
<tr>
<td>ANAT BC2574</td>
<td>Laboratory in Human Anatomy*</td>
<td>Chisa Hidaka</td>
</tr>
<tr>
<td></td>
<td>RESEARCH FOR DEGREE CREDIT</td>
<td></td>
</tr>
<tr>
<td>BIOL BC3597</td>
<td>Guided Research*</td>
<td>Sign up for your internal advisor’s section</td>
</tr>
</tbody>
</table>

*In order to enroll in ANAT BC2574, students must take the pre/co-requisite dance lecture ANAT BC2573 Human Anatomy and Movement offered in the Dance Department.

**In order to sign up for a section of Guided Research, you must submit a Project Approval Form by Jan. 31st for the spring semester.
Upcoming Events & Announcements

To receive the Zoom links to attend any of the events below, make sure you are signed up for our departmental listserv. If you are not, you can sign up by contacting Melissa Flores (mflores@barnard.edu) with your class year.

Events

Introducing the Computational Biology Major: Q&A Session
Fri, April 2nd | 11 am EDT

Majors’ Toast
Tues, April 6th | 1 pm EDT

This spring, the Barnard Biology Anti-Racism Working Group will continue meeting on a semi-monthly basis until Tuesday, April 6th at 10 am EDT. A Doodle poll will be sent out to find a good time to meet over the summer. To join the working group and/or sign up for our listserv, fill out our [Working Group Interest Form](mailto:).

Student Employment Opportunities

The following courses are seeking Lab and Teaching Assistants!

- BIOL BC2100 Molecular & Mendelian Genetics (Summer A)
- BIOL BC3311 Lab in Cell Biology (Summer A)
- BIOL BC1500 Introduction to Organismal & Evolutionary Biology (Fall ’21)
- BIOL BC1501 Introductory Lab in Organismal & Evolutionary Biology (Fall ’21)
- BIOL BC2100 Molecular & Mendelian Genetics (Fall ’21)
- BIOL BC2500 MATLAB for Scientists (Fall ’21)
- BIOL BC2841 Lab in Plant Evolution & Diversity (Fall ’21)
- BIOL BC3311 Lab in Cell Biology (Fall ’21)

Once the job listings have been posted on our [Student Employment](#) page (March 26th for Summer A courses and April 14th for Fall courses), you’ll be able to submit an application through [BarnardWorks](#), so check this page on those dates!